Epigenetics

Epigenetics research delves into the molecular mechanisms that control gene expression and cellular traits without altering the underlying DNA sequence. One crucial aspect of this field is the role of small molecules, which act as powerful regulators of epigenetic modifications. These small compounds, typically comprising a few dozen to a few hundred atoms, have emerged as essential tools in understanding and manipulating the epigenome.

  • DNA Methylation Inhibitors: Small molecules like 5-azacytidine and 5-aza-2'-deoxycytidine are DNA methyltransferase inhibitors. They block the addition of methyl groups to DNA, leading to DNA demethylation. This can reactivate silenced genes, potentially offering therapeutic avenues for conditions like cancer.
  • HDAC inhibitors: HDACs remove acetyl groups from histone proteins, contributing to gene repression. Small molecule HDAC inhibitors, such as Vorinostat and Romidepsin, can reverse this process by increasing histone acetylation, allowing genes to be more accessible for transcription. These inhibitors are being explored for cancer therapy and other conditions.
  • Histone Methyltransferase Inhibitors: Small molecules like GSK126 inhibit specific histone methyltransferases, affecting histone methylation patterns. This can alter gene expression, making them promising candidates for cancer and other diseases with epigenetic dysregulation.
  • RNA Modulators: Small molecules can also target non-coding RNAs involved in epigenetic regulation. For instance, small molecules called small interfering RNAs (siRNAs) can be designed to target and degrade specific long non-coding RNAs, influencing gene expression.
  • Epigenetic Reader Domain Inhibitors: These small molecules target proteins that recognize and bind to specific epigenetic marks. Examples include inhibitors of bromodomain-containing proteins (BET inhibitors), which can disrupt gene regulation by interfering with protein-DNA interactions.

Small molecules in epigenetics research not only provide insights into the fundamental biology of gene regulation but also hold immense promise for developing novel therapeutics. Their ability to selectively modulate specific epigenetic marks and pathways has led to ongoing clinical trials and drug development efforts for various diseases, including cancer, neurological disorders, and inflammatory conditions. Understanding and harnessing the power of these small molecules is at the forefront of modern epigenetics research, offering new hope for precision medicine and targeted therapies.


3 key components involved in the regulation of epigenetic modifications

Epigenetics Writer

Epigenetics writers are enzymes responsible for adding chemical marks or modifications to DNA or histone proteins. These marks include DNA methylation (addition of methyl groups to DNA) and histone modifications (such as acetylation, methylation, phosphorylation, etc.).

Epigenetics Reader

Function: Epigenetics readers are proteins that can recognize and bind to specific epigenetic marks on DNA or histones. These reader proteins interpret the epigenetic code and facilitate downstream cellular processes, such as gene activation or repression.

Epigenetics Eraser

Function: Epigenetics erasers are enzymes responsible for removing or reversing epigenetic marks on DNA or histones. This process allows for the dynamic regulation of gene expression and the resetting of epigenetic states during various stages of development and in response to environmental changes.

Shop By

8 Items

per page
Set Descending Direction
Catalog No.
Product Name
Application
Product Information
Product Citation
  1. Aurora inhibitor

    Danusertib (PHA-739358) is an Aurora kinase inhibitor for Aurora A/B/C with IC50 of 13 nM/79 nM/61 nM in cell-free assays, modestly potent to Abl, TrkA, c-RET and FGFR1, and less potent to Lck, VEGFR2/3, c-Kit, CDK2, etc. Phase 2
  2. c-ABL activitor

    DPH is a c-ABL activitor.
  3. Bcr-Abl inhibitor

    GNF 2 is a Bcr-abl inhibitor that inhibits proliferation and induces apoptosis in Bcr-abl-expressing cells.
  4. Bcr-Abl tyrosine inhibitor?€?

    Radotinib is a novel and selective Bcl-Abl tyrosine kinase inhibitor
  5. Bcr-Abl inhibitor

    PD-173955 is a src tyrosine kinase inhibitor. PD173955 inhibited Bcr-Abl-dependent cell growth. PD173955 showed cell cycle arrest in G(1). PD173955 has an IC(50) of 1-2 nM in kinase inhibition assays of Bcr-Abl, and in cellular growth assays it inhibits Bcr-Abl-dependent substrate tyrosine phosphorylation. PD173955 inhibited kit ligand-dependent c-kit autophosphorylation (IC(50) = approximately 25 nM) and kit ligand-dependent proliferation of M07e cells (IC(50) = 40 nM) but had a lesser effect on interleukin 3-dependent (IC(50) = 250 nM) or granulocyte macrophage colony-stimulating factor (IC(50) = 1 microM)-dependent cell growth.
  6. c-Abl/c-Kit/PDGRFβ inhibitor

    Flumatinib mesylate can reduce the expression of C-MYC, HIF-1 a and VEGF in U266 cell line in a time- and dose-dependent manners, so flumatinib mesylate may become a new drug for MM therapy.
  7. Bcr-Abl inhibitor

    GNF-7 is a potent type-II kinase Bcr-Abl inhibitor with IC50 of <5 nM, 61 nM, 122 nM, 136 nM, and 133 nM for M351T, T315I, E255 V, G250E, and c-Abl, respectively.
  8. ABL inhibitor

    CZC-8004 is a pan-kinase inhibitor and binds a range of tyrosine kinases, including ABL kinase.

8 Items

per page
Set Descending Direction