Endocrinology-Hormones

Small molecules play a pivotal role in Endocrinology Research. These are low molecular weight compounds that have a significant impact on the endocrine system, hormones, and their receptors. Here are some key aspects of how small molecules are involved in this field:

  • Hormone Mimetics and Inhibitors: Small molecules are used to develop synthetic compounds that mimic the actions of hormones or inhibit their effects. For example, drugs like metformin for diabetes management and selective estrogen receptor modulators (SERMs) for breast cancer treatment are used to either mimic or block hormonal activity.
  • Receptor Modulation: Small molecules can bind to hormone receptors and modulate their activity. This is crucial in developing drugs that target specific hormone receptors, like the use of small molecule agonists and antagonists to regulate thyroid hormone receptors.
  • Metabolism Regulation: Endocrinology research often focuses on metabolism and how hormones like insulin regulate it. Small molecules are employed to understand and develop drugs targeting enzymes involved in metabolism, such as glucagon-like peptide-1 (GLP-1) agonists for diabetes treatment.
  • Steroid Hormone Production: Small molecules may be utilized to influence the production of steroid hormones in the adrenal glands or gonads. This is essential for conditions like Cushing's syndrome or polycystic ovary syndrome (PCOS).
  • Hormone Assays: In laboratory research, small molecules are used as tracers or markers in hormone assays. For instance, small molecule fluorophores can be attached to antibodies to detect hormone levels in blood samples.

Drug Development: Endocrinology research relies on small molecules as potential drug candidates. Researchers design and test small molecules for their effectiveness in modulating hormonal pathways, with the goal of developing new therapies for endocrine disorders.
In summary, small molecules are indispensable tools in Endocrinology Research, enabling scientists to better understand the endocrine system's intricacies and develop novel treatments for a wide range of hormonal disorders and conditions. Their versatility and specificity make them valuable assets in advancing our knowledge of endocrinology and improving patient care.


Endocrinology Disease Products


Endocrinology Research Products

Kisspeptin Receptor

Leptin Receptors

Melanocortin (MC) Receptors

Mineralocorticoid Receptors

Ghrelin Receptors

Natriuretic Peptide Receptors

NPY Receptors

Motilin Receptor

PTH Receptor

Shop By

14 Items

per page
Set Descending Direction
Catalog No.
Product Name
Application
Product Information
Product Citation
  1. Smurf1 inhibitor

    Smurf1-IN-A01 (A01) is an ubiquitin ligase Smad ubiquitination regulatory factor-1 (Smurf1) inhibitor with a kd of 3.664 nM, which increases BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation.
  2. Parthenolide ((-)-Parthenolide) is a sesquiterpene lactone which occurs naturally in the plant feverfew (Tanacetum parthenium).
  3. NF-κB inhibitor

    QNZ inhibits the activation of the transcription factor NF-κB and has been used to investigate NF-κB signaling.
  4. NF-κB activation inhibitor

    Caffeic acid phenethyl ester is a potent and specific inhibitor of NF-κB activation
  5. NF-κB inhibitor

    JSH 23 is an inhibitor of NF-kB, blocking its translocation into the nucleus (IC50 = 7.1 uM)
  6. NF-κB inhibitor

    CID-2858522 selectively inhibits the NF-κB pathway (IC50 < 0.1 uM for PMA-stimulated IL-8 production) induced by PKC, operating downstream of PKC but upstream of IKKbeta, without inhibiting other NF-kappaB activation pathways.
  7. ERK/Akt/NF-kB inhibitor

    Tomatidine inhibits the phosphorylation of ERK, Akt, and the nuclear content of NF-kB. possess anti-inflammatory properties.
  8. NF-kB inhibitor

    Pyrrolidinedithiocarbamate ammonium is a selective NF-kB inhibitor, inhibits translation of nitric oxide synthase mRNA to prevent induction.
  9. NF-kB inhibitor

    Withaferin A is a steroidal lactone present in W. somnifera that at 2-25 μM has been shown to bind to and induce aggregation of vimentin intermediate filaments in cultured endothelial cells and fibroblasts, causing apoptosis.
  10. NF-κB inhibitor

    Cyclo(his-pro) (Cyclo(histidyl-proline)) is an orally active cyclic dipeptide structurally related to tyreotropin-releasing hormone. Cyclo(his-pro) could inhibit NF-κB nuclear accumulation.
  11. NF-κB inhibitor

    Urolithin B is one of the gut microbial metabolites of ellagitannins, and has anti-inflammatory and antioxidant effects. Urolithin B is also a regulator of skeletal muscle mass.
  12. glutamate decarboxylase inhibitor

    Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM.
  13. HMGB1 release inhibitor

    Ethyl pyruvate is a simple derivative of the endogenous metabolite, pyruvic acid. Ethyl pyruvate is an anti-inflammatory agent.
  14. IκBα ubiquitination inhibitor

    GS143 is a selective IκBα ubiquitination inhibitor with an IC50 of 5.2 μM for SCFβTrCP1-mediated IκBα ubiquitylation.

14 Items

per page
Set Descending Direction